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Abstract

The opsim4 operations simulation program for the LSST astronomical survey uses a
database of seeing values covering the range of times to be simulated. I describe the
creation of such a database using Dual ImageMotionMonitor (DIMM) data collected
at Cerro Pachon from 2004-03-17 to 2019-10-07. In times during which the data
overlap, I compare the distribution of DIMM seeing values to the seeing measured
in DECam images, taken at a site 10 km away. Because instrumental problems in the
DIMMmay indicate unreliablemeasurements, cuts on image quality (as indicated by
themeasured Strehl ratio) were explored. The DIMMhas significant gaps, so I model
the data (with andwithout cuts on Strehl ratio) and generate artificial data in the gaps
according to the model. The model consists of a sinusoidal variation with a period
of one year, an autoregressive (AR1) model for variations in mean seeing from one
night to the next, and another AR1 model for variations on a 5 minute timescale. I
create four databases according to this procedure, two based on DIMMdata starting
2006-01-01 (with and without a Strehl ratio cut), and two starting 2009-01-01. I then
run opsim simulations using each, and an otherwise identical simulation using the
default seeing database, and explore the differences.
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Seeing values for LSST strategy simulations

1 Introduction

The Vera C. RubinObservatory is currently under construction on Cerro Pachon, in Chile. It will
spend 10 years performing Legacy Survey of Space and Time (LSST), taking repeated images
across a large fraction of the sky visible from Cerro Pachon.

Turbulence in the Earth’s atmosphere causes short time-scale variations in the index of refrac-
tion of the air. These variations place limits on the sharpness of astronomical images taken
by telescopes on the surface of the Earth; this limit is called the “seeing”, typically measured
as the angular full width at half maximum (FWHM) of the image of a point source, the “point
spread function” (PSF), that would be taken by an ideal instrument. The seeing is a property of
the weather, and as such is correlated with the location, time of year, and transient weather
patterns. Els et al. (2009), for example, measure a significant variation in seeing with time of
year at Cerro Tololo, a site ∼ 10 km from Cerro Pachon.

The opsim operations simulation follows candidate survey strategies to generate a database
of exposures plausible for an execution of the survey. Each exposure in the database includes
several parameters, including the time the exposure was taken, the depth of the image (the
brightness of the faintest objects detected at a given signal to noise ratio), and the delivered
PSF FWHM. The LSST project and science groups use these databases to evaluate the different
operations strategies. Such evaluations can then be used both to select among candidate
observing strategies, and set expectations for the scientific usefulness of the LSST data set.

To calculate the depth and PSF FWHM of each simulated exposure, the simulator must have a
value for the atmospheric seeing at the time the image was taken. It takes these values from
a simple database table, which provides atmospheric seeing values at a set of times.

The details of the seeing database used by opsim can affect the results in several ways:

• The global quality of the survey is strongly affectedby the contents of the seeing database.
If the average seeing in the seeing database is worse, the average delivered PSF FWHM
in the images that comprise the survey will be worse, as will the depth of the survey.
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• The accessible area in the sky varies with a period of one year, which corresponds to the
yearly seasonal variation in the seeing. For example, the same area on the sky can be
imaged in January every year, and a different area every July. If the seeing is better in
January than in July of every year, then the data quality in the area of sky accessible in
January will be better than that accessible in July.

• The autocorrelation of seeing over time will also affect the data quality of light curves
of transient objects: if the seeing is weakly correlated over timescale similar to the du-
ration of a transient event, then the quality of different points on the light curve will be
uncorrelated. On the other hand, if the autocorrelation of the seeing over time is strong
on the timescale of the event, then it is more likely for the seeing to be either good or
poor over the whole duration of the event.

• The autocorrelation of the seeing over time on timescales similar to the time between
one exposure and the next will affect the ability of the scheduler to react appropriately
to changes in seeing, if the strategy calls for it to do so.

The seeing conditions on Cerro Pachon have been monitored since 2004 using a Dual Image
Motion Monitor, or DIMM. A DIMM measures the position of a star through two neighboring
paths through the atmosphere, typically separated by ∼ 10 cm. The difference in positions
between these two paths indicates the variability in measured position due to turbulence
on that spatial scale. The Fried parameter, the diameter of a circular aperture over which
the RMS wavefront error induced by atmospheric turbulence is one radian, can be derived
directly from DIMM measurements [Fried (1965); Martin (1987); Tokovinin (2002)].

The archive of DIMM data for Cerro Pachon records seeing values derived for 500nm light
using a Kolmogorov turbulence model, which may be pessimistic. Tokovinin (2002) provides
a formula for approximating a more realistic von Kármán model, provided one can estimate
the outer scale of the turbulence.

The default seeing database used by opsim4 version 081217 was artificially generated from a
model derived from a limited set of data from the Cerro Pachon DIMM, and repeats with a
period of two years.

Observing strategy simulation for the Dark Energy Survey (DES) [Dark Energy Survey Collab-
oration et al. (2016)] had a similar requirement. obstac [Neilsen & Annis (2014)], the DES
operations scheduler and simulator, used seeing data sets generated using a model derived
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from data from the DIMMs on Cerro Tololo [Neilsen (2012)]. The model used by obstac in-
cluded both a seasonal component and a short timescale autoregressive model, producing
seeing values on 5 minute intervals.

2 Overview

The following procedurewas followed in generating new seeing databases and exploring their
effects on opsim4 simulations:

• Obtain the Cerro Pachon DIMM data and explore it interactively, as provided. See sec-
tion 3.

• Validate the DIMM data through comparison with seeing estimated using DECam and
Gemini South imaging. Examine the agreement between these data sets as a function
of the Strehl ratio recorded for the DIMM, and filter the DIMM data accordingly (if nec-
essary).

• For each DIMM measurement, calculate the Fried parameter, 𝑟0, and seeing based on
the von Kármánmodel using the correction given in Tokovinin (2002) and an outer scale
of ℒ0 = 30 meters, based on the measurement reported in Ziad et al. (2000).

• Resample the DIMM data to obtain a data set sampled on 5 minute intervals.

• Create two seeing data sets for LSST observing nights by shifting the resampled DIMM
data by 4748 nights (13 years) or 5844 nights (16 years), and filling in the gaps in DIMM
data using random data according to a time series model derived from the DIMM data.

• Create two additional seeing data sets for LSST observing nights by filtering the resam-
pled DIMM data to remove data with suspiciously low Strehl ratios, then shifting and
filling in the filtered data following the same procedure applied to unfiltered data.

• Run five opsim4 simulations: one using the default seeing database, and one for each of
the newly generates seeing databases, and compare the results.

The following procedure produced the model used to generate artificial seeing values for
times corresponding to gaps in DIMM data:
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• Interactively explore long time-scale variability, and fit a sine with a period of 1 year to
the nightly mean value of log(𝑟0).

• Interactively explore the nightly residuals of log(𝑟0) (after subtraction of the seasonal
model), and fit the residuals using autoregressive (AR1) models on each uninterrupted
sequence of consecutive nights with DIMM data. Derive a global AR1 model for nightly
residuals using a weighted average of the parameters as derived from each sequence
of nights.

• Interactively explore the short time-scale residuals of log(𝑟0) (after subtraction of the
nightly mean values), and fit the residuals using a second autoregressive (AR1) model on
each consecutive sequence of values in the resampled data. (Gaps in DIMM data during
the night result in breaks between sequences in the resampled data.) Derive a global
AR1model for short time-scale residuals using a weighted average of the parameters as
derived from each sequence.

3 Cerro Pachon DIMM data

Bustos (2018) kindly provided Cerro Pachon DIMM data in the form of two text tables, each
with a timestamp and an airmass-corrected seeing value for a wavelength of 500nm, derived
using a Kolmogorov seeing model.

Figures 1 and 2 show the variation in reported FWHM seeing values with time. The regular
extremes of good and poor seeing, shortly after the start and midpoint of each year, match
well with anecdotal experience, and indicate a significant seasonal component. There are also
noticeable long-term trends, but on a timescale comparable to or greater than the range of
the data, so no attempt is made to model these longer-term trends here. This feature is also
evident in the autocorrelation function of the nightly means.

Figure 3 plots monthly quantiles of DIMM seeing against corresponding quantiles of Gemini
South IQ data. If the monthly distributions matched, all points would fall on the blue line.
The correspondence is worst when the seeing is very poor (and so is unlikely to be useful
in any case). Figure 4 compares corresponding hourly means, and shows a similarly close
correspondence.
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Figure 1: Horizontal black lines show themedian (Kolmogorov) DIMM seeing in eachmonth.
Dark gray bars extend from the first through the third quartiles for each month, and light
bars from the 5% to 95% quantiles. The thick red line shows the median FWHM seeing as
derived fromDECam imaging (after subtraction in quadrature of a 0.45” instrumental contri-
bution, and correction to zenith and 500nm). Thin red lines show the first and third quartiles,
and thin orange lines, the 5% and 95% quantiles.

Figure 2: Horizontal black lines show the median (von Kármán, ℒ0 = 30m) DIMM seeing
in each month. Dark gray bars extend from the first though the third quartiles for each
month, and light bars from the 5% to 95% quantiles. The think red line shows the median
FWHM seeing as derived from Gemini South IQ data. Thin red lines show the first and third
quartiles, and thin orange lines the 5% and 95% quantiles.
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Figure 3: Each point represents a quantile in the FWHM distribution of a month, as mea-
sured by the DIMM (horizontal axis) and Gemini South IQ (vertical). The shape and size
indicated which quantile, and the color the median DIMM Strehl ratio in that month.

4 DIMM data quality and Strehl ratio

The legacy seeing database used by opsim (current as of October 2019) uses a seeing database
artificially generated using statistics derived from Pachon DIMMdata taken between 2004-05-
06 and 2006-01-20. These statistics were derived from the DIMM data after the application
of a cut on the Strehl ratio of the left star in the DIMM images, because this might be an
indication that the DIMM is out of focus or misaligned, and therefore providing unreliable
results. (See Wang et al. 2006.) Figure 5 shows the data used to generate this database.
The sharp cutoff in Strehl ratios indicates that the cut value was 0.3 for data taken before
2005-06-17 (MJD=53538), and 0.5 for data taken after.

A low Strehl ratio is not necessarily an indication of poor DIMM data quality, however: it may
also be low due to atmospheric seeing itself. Figure 6 shows both of these effects: the upper
panel shows that DIMM and Gemini South seeing are well-matched except when the Strehl
ratio falls below 0.15, where the DIMM showswider PSF FWHMs than the corresponding Gem-
ini data. On the other hand, the lower panel shows that the DECam seeing is genuinely worse
when the DIMMStrehl ratio is less than 0.25, such that filtering the DIMMdata based on Strehl
ratio will bias the data in the other direction. Fortunately, the fraction of DIMM data with a
Strehl ratio below 0.15 is low (see figure 7), so any effect will be minor. Seeing simulations
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Figure 4: Color represents counts of hours in hexagonal bins in Gemini IQ vs DIMM seeing
space. The red line shows a perfect match. Except for seeing values better than 0.4”, DIMM
values predict the Gemini IQ values well, on average.
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Figure 5: 2D histograms of the left DIMM Strehl ratio and date in the subset of DIMM data
used to generate the legacy opsim seeing data, before (left) and after (right) application of
cuts on Strehl ratios.

based on cut and uncut DIMM data will be used to indicated the range.

5 Generating a time series model for the DIMM data

5.1 The Fried parameter

The best developed methodologies for modeling time series naturally result in normal distri-
butions: if we can transform the data set to be modeled to roughly match a normal distribu-
tion, then a wider variety of tools are available. The FWHM, as reported by the DIMM, has a
highly skewed distribution, with a long poor seeing tail, and a sharp limit to the good seeing.
One physically meaningful quantity that can be mapped to the seeing is the Fried parame-
ter, 𝑟0: the diameter of a circular aperture over which the RMS wavefront error induced by
atmospheric turbulence is one radian. This can be calculated for each reported DIMM value
by inverting equation 5 of Tokovinin (2002). Figure 8 shows the distribution of measured val-
ues for the DIMM seeing (FWHM arcseconds) and log(𝑟0) (right), together with best fit normal
distributions. Neither distribution is precisely normal, but log(𝑟0) is noticeably closer.

Figure 9 shows the time series of DIMM measurements for three nights, chosen randomly
from nights with good DIMM coverage.
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Figure 6: The upper panel shows the distribution of the fractional difference between DE-
Cam and DIMM seeing in hourly bins, split by the median DIMM Strehl ratio for these bins.
The lower panel shows a similar distribution of the simple DECam seeing, similarly binned.
Blue bars show themedian, and red boxes the second and third quartiles. Whiskers indicate
the 5% and 95% quantiles.

Figure 7: A histogram of the median Strehl ratio in each hour of DIMM observing.
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Figure 8: The upper row shows the distribution of the DIMM seeing in arcseconds (left), and
log(𝑟0) (right), together with best fit normal distributions. The lower row shows the corre-
sponding probability plots. A straight line with a slop of one would indicate a perfect match
between the data and the best fit normal distribution.
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Figure 9: The time series of DIMM measurements for three nights, chosen randomly from
among nights with good DIMM coverage.
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uncut cut
𝑎 -0.9163 -0.9119
𝑐 0.04 0.04
𝑑 24.3 23.2
Nightly L1 0.23 0.22
Nightly 𝑒 0.082 0.088
5 minute L1 0.68 0.73
5 minute 𝑒 0.052 0.052

Table 1: Parameters for the least squares fit of Pachon DIMM data to equation 1, the nightly
autoregressive model, and the short time-scale autoregressive model.

5.2 Seasonal fit

The first stage in creating a model for the seeing data was to fit a sine curve (plus a constant)
with a period of one year to log(𝑟0) (equation 1).

log(𝑟0) = 𝑎 + 𝑐 × cos((day − 𝑑) × 2𝜋
365.24217) (1)

A sine was chosen for its simplicity, and because the data did not seem to support the use
of a more complex model. The first subsection of table 1 shows the best fit values for the
constants in equation 1. Figure 10 shows the distribution of the mean log(𝑟0) values for each
month, before and after subtraction of the seasonal model. Before subtraction of the model,
months near the middle of the year have obviously worse seeing, an effect not visible after
subtraction. Figure 11 shows the autocorrelation functions of the monthly mean log(𝑟0) val-
ues. The seasonal effect is again prominent before subtraction of the seasonal fit. Longer
timescale variations are still apparent after subtraction of the seasonal model, but there is no
obvious periodic structure.

5.3 Nightly variation in seeing

After subtraction of the seasonal variation in log(𝑟0), significant night to night correlation re-
mains. These are modeled here as a first-order autoregressive process [Cryer & Chan (2008)],
also referred to as an AR(1) process1, described in equation 2. 𝑦𝑡 is the difference between
the mean log(𝑟0) on that night and the seasonal model for log(𝑟0). L1 is the regressive term,

1An AR(1) processes is equivalent to a damped random walk [Kelly et al. (2009)]
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Figure 10: The top plot shows the distributions of meanmonthly values for eachmonth. The
blue bar shows the median mean value for that month, the box the 1st and 3rd quartiles,
and the whiskers the 5% and 95% quantiles. The bottom plot shows the distributions after
subtraction of the seasonal fit to log(𝑟0).
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Figure 11: The upper and lower plots show the autocorrelation function of the mean log(𝑟0)
by month, before and after subtraction of the seasonal model, respectively. The solid and
dashed gray lines show the 95% and 99% ranges for uncorrelated data.
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the model parameter that represents the correlation between one night and the next, and 𝑒𝑡
is the “innovation”, analogous to the step sizes in a random walk.

𝑦𝑡 = L1 × 𝑦𝑡−1 + 𝑒𝑡 (2)

There aremany nights in the Cerro PachonDIMMdata set with no data. The tool used to fit the
AR1model, from the python statsmodelsmodule [Seabold& Perktold (2010)], does not handle
missing data. To fit the AR1 model, I divided the full data set into sequences of consecutive
nights without missing data, performed separate fits on each sequence, and accepted the
mean values provided by the models, weighted according to the reported uncertainty in each
model fit. Table 1 lists the resultant fit parameters.

The distribution values in a sequence of points generated by an AR1 process is a normal dis-
tribution with a variance given by equation 3[Cryer & Chan (2008) eqn. 4.3.3].

𝜎2
𝑦 = 𝜎2

𝑒

1 − L12 (3)

Figure 12 shows the expected distribution given the fit model parameters over-plotted over
the actual histogram of log(𝑟0) - seasonal fit log(𝑟0). The distribution expected from the AR1
fit is sharper than the measured one, and does not capture the tail on the low-log(𝑟0) side of
the distribution. The latter is a fundamental limitation of the model. The sharper distribution
likely arises from the fit of a collection of sub-sequences of nights, rather than a full, uninter-
rupted data set: figure 1 clearly shows variations on timescales of months to years, too long
to be captured by the sub-sequences of nights to which the AR1 model was fit.

5.4 Short timescale variation in seeing

In addition to varying on a nightly basis, seeing varies on much shorter timescales. The short-
timescale variations are modeled using an AR1 model as well. The raw DIMM data is sam-
pled irregularly, slightly more frequently than once every 5 minutes. I therefore resample the
points onto exact 5-minute intervals, and divide it in into sub-sequences of consecutive unin-
terrupted exposures, similar to the procedure for nightly data. Table 1 lists the resultant fit
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Figure 12: The histogram of differences between nightly mean log(𝑟0) and the seasonal fit,
over-plotted by the result that would be expected by the fit AR1 model.

parameters.

5.5 Correction from Kolmogorov to von Kármán turbulence

The raw data provided by the Cerro Pachon DIMM archive provides seeing data calculated
using a Kolmogorov model for the turbulence in the atmosphere. This data was used to work
backward to the Fried parameter, 𝑟0, which was then modeled. To obtain simulation seeing
values from the 𝑟0 model, I use the approximation given in equation 4, provided by Tokovinin
(2002).

(
FWHM𝑣𝐾
FWHM𝐾 )

2
≈ 1 − 2.183 (

𝑟0
ℒ0 )

0.356
(4)

I use a value of ℒ0 = 30 meters, based on the value of 28.4+25.0
−13.3 meters reported by Ziad et al.

(2000) for Cerro Pachon. This corresponds to a 22% improvement in seeing when converting
from a Kolmogorov to a von Kármán turbulence model and a typical value of 𝑟0, but the range
given is from 18% to 30%. Furthermore, the value reported was measured data from only a
few nights of data, and is likely to be strongly dependent on weather.
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5.6 Seeing data generation

Much of the data to be used by an opsim simulation can be copied directly from the histori-
cal DIMM data, after conversion from a Kolmogorov to a von Kármán turbulence model and
application of an offset in time by an integer number of years. The gaps can then be filled in
using the model.

For sequences of nights with no data, mean values for each night are calculated using the
seasonal model (equation 1) and the nightly AR1 model (equation 2) with the last night of
data with DIMM data and randomly generated values of 𝑒𝑡. For sequences of short time-scale
(5 minute interval) points, artificial data is generated similarly, using the nightly mean, the last
good DIMM data point, and random values of 𝑒𝑡.

Two different seeing databases were generated: one using a 13 year offset (such that the
2022-01-01T00:00:00Z data point in the data set is copied from the 2009-01-01T00:00:00Z
DIMM data), and one using a 16 year offset, such that we take full advantage of all available
DIMM data. Note that there is overlap between the DIMM data used by these two database,
so the results are not uncorrelated.

6 opsim simulations

Three separate simulations were run using opsim, specifically sims_featureScheduler revision
b9f8585 and sims_featureScheduler_runs_1.3 revision 2aba222. Each simulation was run for a
full 10-year LSST survey, with the default configuration except for the seeing database.

baseline_v1.3_10yrs a 10-year simulation using the defaults seeing database, used as a ref-
erence.

ss58777y13_v1.3_10yrs a simulation using the simsee_pachon_58777_13.db seeing database,
which uses uncut DIMM data from 2009-01-01 to 2019-10-07 to simulate 2022-01-01 to
2033-10-07 and the seeing model derived from uncut DIMM data to generate simulated
data for gaps. This simulation is otherwise identical to baseline_v1.3_10yr.

ss58777y16_v1.3_10yrs a simulation using the simsee_pachon_58777_16.db seeing database,
which uses uncut DIMM data from 2006-01-01 to 2019-10-07 to simulate 2022-01-01 to
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2036-10-07 and the seeing model derived from uncut DIMM data to generate simulated
data for gaps. This simulation is otherwise identical to baseline_v1.3_10yr.

ss58779y13_v1.3_10yrs a simulation using the simsee_pachon_58779_13.db seeing database,
which uses cut DIMM data from 2009-01-01 to 2019-10-07 to simulate 2022-01-01 to
2033-10-07 and the seeing model derived from cut DIMM data to generate simulated
data for gaps. This simulation is otherwise identical to baseline_v1.3_10yr.

ss58779y16_v1.3_10yrs a simulation using the simsee_pachon_58779_16.db seeing database,
which uses cut DIMM data from 2006-01-01 to 2019-10-07 to simulate 2022-01-01 to
2036-10-07 and the seeing model derived from cut DIMM data to generate simulated
data for gaps. This simulation is otherwise identical to baseline_v1.3_10yr.

Figure 13 shows the seeing as a function of time, as recorded in the databases produced by
each of the five runs of opsim. The two year periodicity of the seeing that results from the de-
fault two year input database is apparent in the leftmost plot in the figure. Yearly periodicity,
expected from the seasonal variation in the DIMM data and model, is apparent in the plots
from the other two runs.

Figure 14 showsmaps of the mean seeing in the LSST wide-fast-deep (WFD) survey from each
simulation. Degradation is apparent near the northern and southern edges of all three sim-
ulations. This is expected, because these areas are never at low airmass from Cerro Pachon.
At a give range in declination, there is also variation with R.A. This variation is much more
pronounced in the revised seeing databases than in the baseline: in the baseline, the best
6 hours of R.A. have a mean seeing 6% better than the worst 6 hours, while for the revised
seeing simulations, the difference is about 12% (or 14% if no cut on Strehl ratio is applied).

The variation in seeing corresponds to a variation in depth, shown in figure 15 and the right-
hand plot in figure 16, so there is a similar difference in the amplitude of variation for limiting
magnitude: in the baseline, there is a difference of about 0.14magnitudes between themean
limiting magnitudes of the best and worst 6 hours of R.A., while in the revised seeing simula-
tions the difference is about 0.20 magnitudes.

Table 2 lists themean and inter-quartile range (IQR) of the seeing in images from each simula-
tion, showing the consequences of the change in seeing database for both the average seeing
and its uniformity in the v1.3 simulations.
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Figure 13: Each plot shows the variation in seeing with time produced by a different run of
opsim. The top plot shows the seeing for the default seeing database, and the remaining
plots show the seeing for each of the seeing databases produced by simsee.
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Figure 14: Each plot shows the map of mean seeing produced by a different run of opsim.
The top plot shows the seeing for the default seeing database, and the remaining plots show
the seeing for each of the seeing databases produced by simsee.
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Figure 15: Each plot shows the map of mean depth produced by a different run of opsim.
The top plot shows the depth for the default seeing database, and the remaining plots show
the depth for each of the seeing databases produced by simsee.
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Figure 16: The seeing and depth as a function of RA for different runs of opsim4.

mean IQR
band g i r u y z g i r u y z
simulation
baseline v1.3 1.00 0.91 0.94 1.07 0.87 0.90 0.31 0.26 0.28 0.35 0.23 0.25
simsee cut 13 1.14 1.03 1.07 1.20 0.99 1.01 0.39 0.33 0.35 0.41 0.32 0.32
simsee cut 16 1.13 1.01 1.05 1.21 0.98 0.99 0.39 0.33 0.36 0.43 0.31 0.32
simsee uncut 13 1.16 1.05 1.09 1.24 1.00 1.03 0.40 0.34 0.37 0.44 0.33 0.34
simsee uncut 16 1.13 1.02 1.06 1.23 0.98 1.00 0.41 0.34 0.37 0.43 0.31 0.32

Table 2: The mean and inter-quartile range of the FWHM in opsim simulations, by filter, for
the baseline and each replacement seeing simulation.
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7 Discussion

The use of a longer baseline of real seeing data (and a more elaborate model for times when
such data is not available) in operations simulations demonstrates a significant, large angular
scale variation in seeing (and therefore depth) using the current strategy, as well as a mean
shift towider PSF (and therefore shallower limitingmagnitude). The impact of this variation on
science results needs to be carefully evaluated and, if warranted by the science, adjustments
to the strategy made to mitigate these effects.

Such mitigation strategies will necessarily come at a cost. The current strategy is designed to
observe fields when they are near transit. Such a strategy optimizes the quality of data taken
at any given time: a field observed near transit at a given declination will have a better FWHM
than another at the same declination, but further from transit. Observing fields near transit,
however, necessarily maps time of observation directly to sidereal time, which is correlated
with time of year, and therefore the seasonal variation in seeing.

This correlation can be reduced by observing fields when they are further from transit, de-
pending on seeing conditions. Such a strategy can be designed to even out the extremes in
the variation. However, if the strategy maintains the global distribution in declination, these
exposures will be at higher airmasses than those that would have been taken at transit. This
will degrade the overall mean image quality.

A compromise will need to be made. The effect on image quality is not linear with zenith
distance (or time from transit), but is shallow very close to transit, and degrades more rapidly
as the angle increases: a mild deviation from the transiting strategy may only have a mild
effect on the mean image quality.

8 Future work

Although an improvement over the default seeing database, the revised seeing databases
presented here leave significant room for improvement. Some refinements that could be
explored include:

• Creating a better model of the poor seeing tail in the distribution of seeing values, either
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as an additional component or by transforming the DIMM’s log(𝑟0) distribution.

• Interactive exploration and informal experience suggest that the seeing has a systematic
variation with the time of night, in particular that the seeing is slightly worse shortly after
sunset. This needs to be studied further, and perhaps modeled as well.

• Rigorous evaluation of higher-order ARMAmodels using a formal criteria (either Akaike’s
InformationCriterion (AIC) or a Bayesian InformationCriterion (BIC))[Cryer&Chan (2008)
pp. 130-132], rather than the AR1 model used here. The AR1 model was selected due
to its simplicity and apparent effectiveness after informal exploration; additional terms
and/or a moving average component may be warranted.

• Modeling the short term, nightly, seasonal, and long-term components as a single sea-
sonal ARMAmodel, following the formalismdescribed in Cryer &Chan (2008) chapter 10.
Rather than fit each element separately (as has been done here), this approach incorpo-
rates long-term effects by including additional terms in the autoregressive equation.

• Modeling using a continuous ARMA model (CARMA) [Brockwell & Davis (1996) pp. 344-
348] rather than the discrete ARMAmodel used here. Suchmodels are significantlymore
complex and lack the well developed software tools, but naturally handle the irregularly
sampled nature of the DIMM data.

Long term (multi-year) trends in seeing are apparent in the DIMM data, however, and im-
provement from any of the above seems likely to be minor compared to the uncertainty due
to these trends. Finally, it seems unlikely that any of these improvements will have a major
effect on survey strategy metrics anyway.

In addition to modeling the seeing, improved modeling of the effect of clouds in survey data
quality should also be studied.

9 Conclusion

The full archive of data from the Cerro Tololo DIMM shows strong seasonal variations, and
larger mean values for the seeing, than are present in the default input database used by the
LSST opsim operations simulator. Inclusion of an updated seeing database is therefore impor-
tant for using opsim to evaluate both the overall survey quality and also large-scale variation
in seeing and depth across the survey footprint.
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B Acronyms

Acronym Description
2D Two-dimensional
AIC Akaike Information Criterion
DE dark energy
DECam Dark Energy Camera
DES Dark Energy Survey
DIMM Differential Image Motion Monitor
DM Data Management
FWHM Full Width at Half-Maximum
L1 Lens 1
LSST Legacy Survey of Space and Time (formerly Large Synoptic Survey Tele-

scope)
MJD Modified Julian Date (to be avoided; see also JD)
NOAO National Optical Astronomy Observatories now NOIRLab
PSF Point Spread Function
RA Right Ascension
RMS Root-Mean-Square
RTN Rubin Technical Note
WFD Wide Fast Deep
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